Piotr Berman, Andrzej Lingas

On complexity of regular languages in terms of finite automata

304

```
Piotr Berman, Andrzej Lingas
```

ON COMPLEEITY OF REGULAR LANGUAGES
III TERMS OF FINITE AUTOMATA

304
A. Blikle (przewodniczacy), S. ByLka, J. Lipski (eelcretarz),
L. £ukaczewicz, R. Marczyńaki, A. Mazurkiowicz, T. Mowicki,
Z. Pawlak, D. Sikoraki, Z. Szoda (zagtẹpca przewodniczącego),
4. Warmus

Prace zgzosiz Zdziazam Pawlak

Mailing addresses: Piotr Berman
ul. Howowiejska 10 m. 50
00-643 Warezawa

Andrzej Lingas
ui. Nowogrodzks 76 m. 11
02-018 Warezawa

Prixe ed a manuscript
\mathbb{N} a prawacbrekopisu

Nakzad 450 egz. Ark. Wyd. 0,85; ark. druk. 1,25. Papier offaet. kl. III, $70 \mathrm{~g}, 70 \times 100$. Oddano do druku we wrzeṡniu 1977 r. W. D. N. Zam. nr 600/0/77

```
            Abstract . Содержанин . Streazczenie
    In our paper 4 measures of complezity of regular languages
are defined. These messures are related with complexity of finite
automaton recognizing the given language (automaton may be 1 or
2 may, deterministic or not). We construct families of regular
languages for which these measures are substantially different.
It is also show that the hipothesis L = NL implies the poli-
nomial relation between measures corresponding to 2-way automatg
```

Харантершстина регулярных язнвов при помощи повечних автоматов

Опредедяртся /четнрыя способамп/ меры сдохности регудярньх языков посредствои слопення опознапщих эти языни нонечных автоматов /с однии или двумя направдөвиями двптения годовки, детерминированннх или недерминированньх/。Конструируются семеиства регулярннх язнков, ддя ноторнх этп меры действтельно различны. Показывается, что из гипотезы $\mathrm{L}=\mathrm{NL}$ вытенает выращаемая многочленами зависимоств мепду мерами, соответствующиии автоматам с двумя ваправлевиями двигения годовки.

Charakteryzacja zzozoności regularnych
jezyków terminach skończonych automatóm
Okreslamy (na 4 sposoby) miare zzosoności. jezjka regularnego poprzez z飞ozonosd rozpoznajacego go automatu skończonego (jedno - lub dmustronnego) deterministyemego lub nie). Konstruujemy rodziny jezykôm regularnych, dla ktorych miary te as istotnie rókne. Pokazujem tew, te z hipotezy ImI wyrike wielomianowa zależnoś pomiedzy miarami odpowiadajacymi automatom dwustronnym.

Main notions and results
DFA(NDPA) - one-way (non-) deterministic finite automaton
2DFA(2NDFA) - two-way (non-) deterministic finite automaton
$D_{1}\left(I_{H}\right)\left(N_{1}\left(J_{0}\right)\right.$ - minimal number of states for DFA(NDFA) which
recognizes language Ir
$D_{2}\left(L_{1}\right)\left(N_{2}\left(L_{1}\right)\right)$ - minimal number of states for 2DFA(2NDEA) which - recognizes language I
$\mathscr{U}(N L)=$ the class of languages which are recognized by deterministic (or non-deterministic) TM supplied by a logarithmicaly bounded worik tape.

There is a constant c and families of languages P_{n} and 3_{n} given by constmuction such that
$\operatorname{Vn} \in \mathbb{N} \quad D_{2}\left(P_{n}\right) \leqslant$ cn \& $D_{T}\left(P_{n}\right) \geqslant n^{n}=2^{n \operatorname{logn}} \quad$ (1)
$V n \in \mathbb{N} \quad N_{2}\left(B_{n}\right) \leqslant c n \quad \& \quad D_{4}\left(B_{n}\right) \geqslant 2^{n^{2}}$

Corollary from theorem of the second part shows, that $I=N$
implies that there is a polynomial p_{0} such that

$$
\begin{equation*}
D_{2}\left(I_{1}\right) \leqslant p_{0}\left(\max \left(N_{2}\left(I_{1}\right), \mathbb{I}_{L}\right)\right) \tag{Z}
\end{equation*}
$$

Where constant m_{I} means the length of the longest word of language I. This inequality is shown by construction.

Introduction

Recent investigations of computional complexity of languages become the main subject in computer science. Numerous results are obtained but principal hypotheses still remain open. One of the most importan= subjects in this field is seeking how complexity of a langua-
ge changes when we replace the deterministic form of algorithm by the non-deterministic one. Unsolved hypotheses $P=N P$ and $I=N L[2,3]$ are related to this problem. In studying these problems the need emerges of a complexity measure of finite subsets of the languages under investigation.

When a machine works with a finite set of words it only uses a finite portion of its memory. Thus it is possible to identify the state of control of this machine and the configuration of its memory together with the state of a certain two-way finite automaton (which is deterministic if that machine is also deterministic). The minimal number of states for a finite automaton recognizing the mentioned part of a langrage may be its measure of computatio 12al complexity。

Rabin $[1]$ showed that 2DFA and 2NDFA recognize the same family of languases as DFA, i.e. regular langrages. Its proof is effective and implies following estimations:

$$
\begin{align*}
& D_{1}\left(I_{1}\right) \leqslant D_{2}\left(I_{1} D_{2}\left(I_{1}\right)\right. \tag{4}\\
& D_{2}\left(I_{1}\right) \leqslant 2\left[N_{2}\left(I_{1}\right)\right]^{2} \tag{5}
\end{align*}
$$

hese inequalities and results of tne first part of this work imply

$$
\begin{equation*}
D_{2}\left(B_{n}\right)>\mathbb{N}_{2}\left(B_{n}\right) \tag{6}
\end{equation*}
$$

for almost every natural n. Hence non-deterministic automata have an advantage over detemministic ones. We do not know how essential this advantage is. Corollary associated with a theorem from the second part of this work shows that this question is related to the answer to the hypothesis $I=N L$. Roughly speaking, if this hypothesis holds the complexity of 2DFA accepting finite Iangrage depends polynomially on the complexity equivalent 2 NDFA and the Iength of the longest word from this language.

Aknowledgements. The authors thank dr A. Skowron for his help in preparing this paper and sponsoring during their research
I. Definition. A two-way finite automaton is a 5-tuple
$M=\left(Q_{\mathbb{M}}, \Sigma_{\mathbb{M}}, \delta_{\mathbb{M}}, q_{O M}, q_{F M}\right)$ where
T. Q Q_{M} is the finite set of states
2. Σ_{M} is the finite input alphabet, $\{\hat{K}, \phi\} \cap \Sigma_{M}=\phi$
3. $\delta_{M^{\prime}}:\left(Q_{M} x\left(\sum_{M} \cup\{d, \phi\}\right)\right) \rightarrow P\left(Q_{\mathbb{M}} X\{-1,1,0\}\right)$ is the transition par-
tial function of M and $P(X)$ denotes the family of all subsets of X.
4. $q_{O M} \in Q_{\text {II }}$ is the initial state of M.
5. $q_{F M} \in Q_{M}$ is the final or accepting state of M.

We say that \mathbb{M} is deterministic if for each $q \in Q_{\mathbb{M}}$ and $a \in \sum_{\mathbb{M}} \cup\{\phi, \phi\}$ $\delta_{M}(q, a)$ is a singleton. Otherwise, it is called nondeterministic。
$L(\mathbb{M})$ is a language accepted by \mathbb{M}. \mathbb{A} word a_{1}, \ldots, a_{n} from $\Sigma_{\mathbb{M}}^{\pi}$ belongs to $I(M)$ iff there are configurations $C_{0}, C_{\uparrow}, \ldots C_{k}$ in form

$$
c_{i}=\left(a_{0} a_{1} \ldots a_{n} \cdot a_{n+\uparrow}, a_{i}, 1_{i}\right)
$$

where $a_{0}=\phi, a_{n+1}=\phi, a_{1} \ldots a_{n}$ as mentioned above, $q_{i} \in a_{n}$, $I_{i} \in\{0,1,-, n+1\}$ and $C_{0}=\left(a_{0} a_{1} \ldots a_{n} a_{n+1}, a_{0}, 1\right)$ (initial condition)
$\left(q_{i+1}, I_{i+1}-I_{i}\right) \in \delta\left(q_{i}, a_{I_{i}}\right)$ (condition of proper transition) $q_{k}=q_{\text {I }} \quad$ (final condition)

For other details see Rabin and Scott [\dagger].
Now our purpose will be proving the statements (\uparrow) and (2) mentioned among the main results. First the idea of Rabin and Scott's proct of (4) and (5) will be reminded.

Let a DFA, called A, recognize the language accepted by 2DFA, called B, with the set of states Q_{B} consisting of n elements. Automaton A, after reading an initial part of a certain word, ought to be able to reconstruct the action of B when it comes back into the subword read. Thus, the state of A may be a function $f: Q_{B} \rightarrow Q_{B}$, where $f\left(q_{i}\right)=q_{2}$ means that if B comes into the subword read in state q_{1}, it will leave this subword in state q_{2} or will accept the whole word, if q_{2} is the accepting state. Hence has so many states as there are functions $f: Q_{B} \rightarrow Q_{B}$ i.e. n^{n}. Because B might be the minimal 2DFA for the given language, this construction implies the following inequality:

$$
D_{1}\left(I_{1}\right) \leqslant \bar{Q}_{A}=n^{n}=D_{2}(I)^{D_{2}(I)}
$$

Similarly when automation B is non-deterministic, then the state of A may be a function $f: Q_{B} \rightarrow P\left(Q_{B}\right)$, where $f(q)$ consists of these members of Q_{B}, in which B can leave the subword read after coming into it on the state q. There are $2^{n^{2}}$ of similar functions, hence

$$
D_{1}\left(L_{1}\right) \leqslant \overline{\bar{Q}}_{A}=2^{n^{2}}=2\left[N_{2}(L)\right]^{2}
$$

One car pose the question, whether \& really ought to have so many states. In other words, will all of these functions be needed during testing words whether or not they are members of L . We will build families of langrages, P_{n} and B_{n}, such that every word of one of these languages will reveal one of the mentioned functions explicitly, coding it as a set of pairs (argument, value).

Definition $f^{n}=\mathcal{E} \cup T \cup T 1 \cup \ldots \cup T^{n}$

$$
\begin{equation*}
\forall s \in\{1, \ldots, r\} \quad \alpha_{s} \leqslant k<\beta_{s} \leqslant k-1 \tag{i}
\end{equation*}
$$

(it means that \mathcal{L}_{S} signs a pair from the left side of $\#$ and β_{S} signs a pair from the right side)

$$
\begin{align*}
& i_{\alpha_{1}}=0 \& \forall s \in\{\uparrow, \ldots, r\} \quad j_{\alpha_{s}}= \\
& i_{\beta_{s}} \& \tag{ii}\\
& \& \forall_{s} \in\{1, \ldots, r-1\} \quad j_{\beta_{s}}=i_{\alpha s+1} \& j_{\beta_{r}}=0
\end{align*}
$$

Lemma T. There is a constant a such that

$$
\forall n \quad N_{2}\left(\mathrm{~B}_{\mathrm{n}}\right) \leqslant \mathrm{cn}
$$

Proof. Automaton which accepts B_{n} consists of a controlling part having c states, common for every n, and a counter which counts up to n. First, the automaton checks whether the given word is in A_{n} or not. Second, the automaton takes nondeterministically a pair as the left side of the marker and checks that $i_{i}=0$. Then the automaton loads $j_{\alpha,}$ into the counter and goes as the right side of the marker. It takes a pair nondeterministically and checks if $i_{\beta 1}=j_{\mu}$. Next, it loads $j_{\beta 1}$ into the counter and seeks a pair i_{2} nondeterministically. At the last step of computation checks if $j_{\beta_{S}}=0$ and accepts the word.
Lemma. 2. The number of quotients of B_{n} is non less then $2^{n^{2}}$. (It means that the DPA recognizing B_{n} ought to have at least $2^{n^{2}}$ states).

Proof. Let X be a subset of $\{1, \ldots, n\} x\{1, \ldots, n\}$, and let
$X=\left\{\left(i_{\uparrow}, j_{1}\right) \ldots\left(i_{k}, j_{k}\right)\right\}$. Then the word s_{x} will be in form
$s_{x}=\$ \varepsilon \notin \varepsilon \phi t^{i 1} \notin t^{j} \uparrow \phi \ldots \phi t^{i k} \phi t^{j k} \#$ It can be checked that if X_{1} and X_{2}, the subsets of $\{1, \ldots, n\} \times\{1, \ldots, n\}$, are different then the quotients $s_{X_{1}} \| \mathrm{B}_{n}$ and $s_{X_{2}} \| \mathrm{E}_{\mathrm{n}}$ are dise ment too.

Assume, that the pair $\left(i_{0}, j_{0}\right)$ belongs to x_{1} but not to x_{2}. Then, it is easy to see that the word $t_{i_{0}} j_{0}$

$$
t_{i_{0}, j_{0}}=\varepsilon_{\&} 1^{i_{0}} \not \& \hat{j}_{0} \not \varepsilon_{p}
$$

belongs to the first quotient, but not to the second. We remind to the reader that $\hat{\varepsilon}$, the empty word, codes 0 . There are $2^{n^{2}}$ different subsets of $\{1, \ldots, n\} x\{1, \ldots, n\}$ hence there are $2^{n^{2}}$ different quotients.

Whe above two lemas complete the proof of the statetemt (T). Definition. P_{n} is a subset of the language B_{n}. If s is a member $0 f P_{n}$ then it in addition to the conditions (i) and (ii) fulfils $\forall s \in\{1, \ldots, r\} \forall \mathrm{V} \forall_{q}\left[\alpha_{s}<p \leqslant k<q<\beta_{s}\right] \rightarrow\left[i_{\alpha_{s}} \neq i_{p} \&_{i_{q}} \not i_{\beta_{s}}\right]$ (iii) Proof of the following lemma reveals why this condition was introaucea.

Demma ". There is a constant c such that
$\forall n \mathbb{N}_{2}\left(B_{n}\right) \leqslant$ cn
Froof The automator, which accepts P_{n}, is a $2 D$ A consisting of a
controlling part having c states, common for cvery n, and a counter,
wich counts up to n. First, the automaton checks if the given word
is in A_{n} or not. Second, the head of the automaton stands on the
marier \# and checks step by step, if the Ieft elements of the sub
sequent scanned pairs from the left of \# are equal to 10 . If it has
found such a pair, then it loads the right element of this pair to
thecounter and comes back onto the marker. Next, the automaton
checks step by step if the left elements of the subsequent pairs
from the right are equal to a number contained in the counter.

The reader may find how it can be done deterministically. If the automaton has detected such a pair, then it loads the right element into the counter and comes back onto the marker. At the last step of computation the automaton loads 1° into the counter on the right side of the marker, and accepts the word.

Lemma. 4. The number of quotients of P_{n} is non less then n^{n} (it follows $D_{2}\left(P_{n}\right) \geqslant n^{n}$).

Proof. Let f bee a function $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$: Then the word s_{f} will be in the form $s_{f}=\phi \varepsilon \& \varepsilon \phi 1^{1} \& 1^{f(1)} \phi \ldots \phi 1^{n} \& q^{f(n)} \#$ It can be checked that if functions f_{1} and f_{2} are different, then quotients $s_{f_{1}} \| P_{n}$ and $s_{f_{2}} \| P_{n}$ are different too. Assume that $f_{T}(i) \neq f_{2}(i)$. Then it is easy to see that the word $u_{i, f_{p}(i)}=\varepsilon_{\phi} \tau_{\phi}^{i} q^{f(i)} \notin \varepsilon_{\phi}$
belongs to the first quotient but not to the second. There are n^{n} differenti functions from $\{1, \ldots, n\}$ to $\{1, \ldots, n\}$ hence there are n^{n} different quotients.

The Ixst two lemmas complete the proof of (2).
Now we will use the obtained results to compare the measures $~_{2}$ and
D_{2} in respect to the languages B_{n}.
Inerma 5. $\quad D_{2}\left(B_{n}\right) \geqslant 0.5 n^{2} / \ln n$
Proof. This is a conclusion of lemma 2 and (5):

$$
D_{1}\left(B_{n}\right) \leqslant D_{2}\left(B_{n}\right) \quad D_{2}\left(B_{n}\right)
$$

$$
2^{n^{2}} \leqslant D_{1}\left(B_{n}\right)
$$

Hence $2^{n^{2}} \leqslant 2^{D_{2}\left(B_{n}\right) \cdot I n \cdot D_{2}\left(B_{n}\right)}$, so $n^{2} \leqslant D_{2}\left(B_{n}\right) \cdot I n D_{2}\left(B_{n}\right)$
It is obvious, that $\left(0.5 n^{2} / \ln n\right) \cdot \ln \left(0.5 n^{2} / \ln n\right) \leqslant n^{2}$, thus
$\left(0.5 n^{2} / \operatorname{In} n\right) \cdot \operatorname{In}\left(0.5 n^{2} / \operatorname{Ir} n\right) \leqslant D_{2}\left(B_{n}\right) \cdot \operatorname{In} D_{2}\left(n_{n}\right)$

Because $x_{0} \ln x$ is a monotonic function, we have $0.5 n^{2} / \ln n \leqslant D_{2}\left(B_{n}\right)$.
Iemma 5 and lerma, 1 imply that for some constant c ':

$$
D_{2}\left(B_{n}\right) \geqslant c^{\prime}\left[N_{2}\left(B_{n}\right)\right]^{2} / \text { In } N_{2}\left(B_{n}\right),
$$

and this implies

$$
D_{2}\left(B_{n}\right)>N_{2}\left(B_{n}\right)
$$

for almost every natural n.
II.

Informally, by a Turing machine ("TM for short.) we mean a device with a finite-state control, a two-way readonly input tape with the endmarkers (\mathbb{Q}, $\%$ and a siagle $\mathrm{twoway} \mathrm{read-mile} \mathrm{work} \mathrm{tape}. \mathrm{Additionally} ,\mathrm{the} \mathrm{ma-}$ chine may be equipped with a one-way write-only output tape. If the Turing machise is deterministic (nondeterministic) we write DTM (MDTM reapectively) for short. Por the deta11a see $[1]$.
Por any KDTM or DTM, 1 , $\mathrm{L}(\mathrm{M})$ denotes the language accepted by 14 like for 2BDPA or 2DPA.

Let $f:{ }_{H} \rightarrow \mathbb{I}$. A Turing machine is $f($.$) tape-bounded iff,$ whenever it is started with any input word x on its input tape, it will never scan more than $f(|x|)$ symbols on its work tape. $|x|$ denotes the lenght of x. If $f(.) \leqslant \log ($. we also say , that M is logarftmically tape-bounded.

The hypothesis $\mathrm{I}=\mathbb{1}$. seems not to hold, when one compare languages about which we know that they belong respectively to L and L. Thus the Pirst result we will prove in this part of our paper can offer another possibility to reject it.

Theorem 6. If $L=W L$ then exists a polynomial p_{0} such that for each me \mathbb{I} and for each 2TDPA, A, one can construct ${ }^{1)} 2 D P A, B_{A}$, which satisfies the following conditions :
1/ $\left\{x\left||x| \lll m \cdot \overline{\bar{Q}}_{\mathbb{A}} \& x \in L(\mathbb{A})\right\} \subseteq L\left(B_{A}\right) \subseteq L(A)\right.$


```
Proof. Let cod: { c | & is a 2NDPA over the input
```



```
encode-function. Por any 2NDFA,C , the word cod(C)
consists of three parts encoding respectively s
qoc , \deltac, qPC . The states of C are represented in
cod(C) by the numbers from {n\in }|||\leqslantn\leqslant\mp@subsup{Q}{c}{}}\mathrm{ in the
dyadic notion. }\sum, is the auxillary alphabet , {0, 1}\subseteq\mp@subsup{\sum}{1}{}
{&,%,##\cap(\Sigma\cup\Sigma, 隹)=\varnothing. The details of this encoding
are left to the reader.
We may assume without loss of generality, that
    |ood(C)|\leqslantk\cdot\mp@subsup{\overline{Q}}{c}{2}
                                    (7)
where k is an integer constant independent of c.
Let us define a language }\mp@subsup{I}{1}{}\mathrm{ :
I
    [y=\operatorname{cod (C) & }\quadx\inI(C)]}
It is. easy to construct a logaritmically tape-bounded WDMM, \(M\), accepting \(I_{i}\). When \(\Psi\) verifies that a input word is of the form . \(x\) \# \(\operatorname{cod}(C)\) ) where \(x \in \sum^{\text {B }}\) and \(C\) is 2 NDPA , then \(\mathbb{K}\) will simulate the action of \(C\) with the input word \(x\), using the \(\operatorname{cod}(C)\). Por this purpose \(x\) will keep the last state and the last head position of simu= lated \(C\) on ita work tape. Since \(\overline{\bar{Q}}_{C} \leqslant|\operatorname{cod}(C)|\) so. M will only need \(\lceil\log |\operatorname{cod}(C)|+\log |x|+2\rceil \leqslant\) \(\leqslant\lceil 2 \log |x \# \operatorname{cod}(C)|+2\rceil\) bits of its work tape to do it. \(M\) accepts \(x \# \operatorname{cod}(C)\) if and only if the aimulated \(2 D F A, C, r e a c h e s\) the final state for \(x\).
Hence, matching a suitably numberous work-tape alphabet
```

```
for M we will obtain that I In(Lq = I (M)) belonge to NL。
One may also Observe that I is IL-complete, see [3] .
    Let us suppose that I = ML . Then we may assume
that }\mp@subsup{I}{1}{}\mathrm{ is recognized by a logaritmically tapembounded
DMM, 里.
P
for n\inII.
Let A be a 2MDPA, mEN.
If we bound length of the work tape of T by }\lceil\operatorname{log}(\mp@subsup{p}{1}{}(\mathrm{ (m. }\overline{\mp@subsup{\overline{Q}}{A}{}}))\rceil\mathrm{ ,
we will obtain certain device which one may identiPy with
the 2DFA, TM, as it was mentioned in the introduction.
Hotice, that by (7) the following inequalities hold s
```



```
    m}\cdot\mp@subsup{\overline{Q}}{\mathbb{A}}{}+k\cdot\mp@subsup{\overline{Q}}{\mathbb{A}}{2}+1\leqslant\mp@subsup{p}{1}{}(m\cdot\mp@subsup{\overline{\overline{Q}}}{\mathbb{A}}{})\mathrm{ , where
IE\Sigma##
Since T is a logaritmically tape bounded so
    {x#}#\operatorname{cod}(\mathbb{A})||x|\leqslantm\cdot\mp@subsup{\overline{\overline{Q}}}{A}{},\quadx#\operatorname{cod}(\mathbb{A})\in\mp@subsup{I}{1}{}}\subseteqI(\mp@subsup{T}{\mathbb{A}}{}
    SL(T)= LI

As in the introduction, under the state of \(T_{A}\) we mean a pair consisting of a configuration of the bounded work tape of T and of a state of \(T\). Thus exists an integer constant 1 assigned by that 8
\(\left.\left.\bar{Q}_{A} \leqslant 1^{\log \left(p_{q}(I I\right.} Q_{A}\right)\right) \quad\) What implies
\[
\begin{equation*}
\overline{\bar{Q}}_{\mathbb{I}_{\mathbb{A}}} \leqslant P_{0}\left(m \quad \overline{\bar{Q}}_{\mathbb{A}}\right), \tag{9}
\end{equation*}
\]
where \(p_{0}\) La the Ilxed polynomial independent of \(m\) and A.

Each \(\bar{y} \in\left(\Sigma \cup \Sigma_{1}\right)^{\mp}\) appoints the partial fun ction \(f_{y}\) from \(Q_{T_{A}}\) to \(Q_{T_{A}}\) as follows :
\[
\begin{aligned}
& \text { for any } q, r \in Q_{r_{A}} \\
& \text { ar/ is } \delta_{T_{A}}(q, \#) \in Q_{T_{A}} \times \quad\{-1\} \text { then } f_{y}(q)=q \\
& \text { ar/ suppose that: if } T_{A} \text { starts to scan \# } \bar{F} \text { of in } \\
& \text { the state } q \text { With its head over \#" then (without leaving } \\
& \text { \#y \%) }
\end{aligned}
\]
It is quite obvious that
\(I\left(B_{A}\right)=x\left\{x \mid \# \operatorname{cod}(A) \in I\left(T_{A}\right)\right\}\)
By ( 8 ) and by the definitions of \(L_{1}, \mathbb{P}_{A}, B_{A}\) we obtain that :
\[
\left\{x\left||x| \leqslant m \cdot \overline{\bar{Q}}_{\mathbb{A}}, x \in I(\mathbb{A})\right\} \subseteq L\left(B_{\mathbb{A}}\right) \subseteq L(\mathbb{A})\right.
\]

The statement (9) and the equality \(Q_{B_{A}}=Q_{T_{A}}\) imply \(\overline{\bar{Q}}_{B_{A}} \leqslant p_{0}\left({ }^{\prime} m \cdot \overline{\bar{Q}}_{A}\right)\)

Gorollary I. If \(I=\) IN then exists a polynomial \(P_{0}\),
where for each finite language I
\(D_{2}(L) \leqslant p_{0}\left(\max \left\{\mathbb{F}_{2}(L), m_{L}\right\}\right)\) (3)
\({ }^{m}\) denotes the length of the longest word from \(L\).
1)

Remark. The construction used in the proof of the theorem 6 can be done by a logaritmically tape - bounded DTM for an input word encoding any constant and any 2NDPA. This DTM prints on its output tape the encoding of the wanted 2DPA. If we add the above observation to the thesis of the theorem 6 we can prool the reversal theorem, too.

Without making the assumption that \(I=\) NF we can present some worse estimations as that of the theorem 6 and corol= lary 7. In this purpose we will use the reault of Savitch [4] , who showed that any language accepted by \(f(n)\) tapebounded WTDTM can be recognized by \(O\left(P^{2}(n)\right)\) tape-bounded DTM, where \(f(n) \geqslant \log n\), \(n \in \mathbb{N}\).

Temme 8 . There is a constant \(d\) such that ,for each IIEI and for each 2TDFA A one can construct \({ }^{2}\) ) \(2 D P A, D_{A}\), which satisfies the following conditions s \(1 /\left\{x| | x \mid \leqslant m \cdot \bar{Q}_{\mathbb{A}} \& x \in L(A)\right\} \subseteq I\left(D_{A}\right) \subseteq L(A)\) 2) \({\overline{\sigma_{\bar{D}}}}^{D_{A}} \leqslant\left(\bar{m}_{A} \overline{\bar{Q}}_{A}{ }^{d} \log \left(m \overline{\bar{Q}}_{A}\right)\right.\)

Sketch. The proof is like one of the theorem 6 . It suifices to replace the machine \(T\) ('from the theorem 6 ) recognizing \(I_{1}\) on the \(\log n\) - bounded work tape by a \(D T M, T_{1}\), which does it on a \(O\left(\log ^{2}(n)\right.\) - bounded Woris tape. Such machine \(T_{1}\) exists by the mentioned result of Savitch.

Gorollary 9: There is a constant a that for each finite language I
\(D_{2}(I) \leqslant E N_{2}(L){ }^{d} \log E N_{2}(L)\)
where \(\quad \mathbb{F N}_{2}(L)=\max \left\{\mathbb{N}_{2}(L), \quad \mathbb{m}_{I}\right\}\)
2)
- Remark. The construction from the lema 8 can be made by \(\log ^{2}(n)\) tape-bounded. DIM for an input word encoding any constant and any 2rDPA.
```

rsow Öniversity

```

\section*{}
[1] Rabin, M.O. Scott, D., Pinite automata and their decision problemg , IBM Journal of Res. Development, \(3(1959)\), page 114-125.
[2] Cook, S.A., The complexity proving procedures,proce= edings of \(3^{\text {rd }}\) Annal ACM Symposium of Theorg of Computing.
[3] Jones, N.D., Hien, Y.E., Lasaer, W.T., New Problem complete for nondeterministic \(\log\) - space , Mathematical Systems Theory rd 10 no 1 (1976)
[4] Savitch, Relations between nondeterministic and deter= ministic tape complexities. Journal of Comp. and Syst. Sc 4 (1970).
Ehrenfeucht and Zeigler present in [5] and [6] another approach to the problem of complexity of finite languases:
[5] Ehrenfeucht A., Practical Decidability, Journal of Comp. and Syst. Sc. 11(1975).
[6] Ehrenfeucht A., Zeigler P., Complexity Measure for regular Expresions, Journal of Comp. and Syst. Sc. 12(1976).

Nr 285 - T. Traczyks On consecutive retrieval from drum-type storage
Mr 286 - J. Winkowskif Geme of life as a synchronous process that can be realized asyachronously

Hr 287 - J. Winkowskis Algebras of arrays - a tool to deal with concurrency

Ir 288 - T. Lipskis One more polyomial complate consecutive retrieval problem

Nr 289 - T. Skrzypkonski Homomorfimy maszyn ze sterowaniem
Ir 290 - J. Górakis Suboptymalny algorytm wyenaczania organisacf1 zrarted sbioru zapisów

Ir 291 - K. Subleta, W. Balcerzaks Automat skotesons Jako model zamertosci bazy denjch

Fr 292 - Z. Rá́ A mathamatical model of a diagnostic experiment
Nr 293 - P. Dembiński and S. Budkowski, I. Hansen, J. LeszczyZowski, A. Paplinkli Verification oriented microprogranming language
Nr 294 - B. Muchlado-Marońska Problemy translacj1 w systemach konwergacyjnych

Ir 295 - R. BLaszczyk faliza mokliwosci implementacjl metody liat Inverayjnych dia syatem informacyjnego STUDETH

Nr 296 - E. Turskas Podstany teoretycme 1 metody masmynowe swiazane z okresleniom stref aumeracyjnych n sieci をączności

If: 37 - S. Teluk Pewien aposib organizacfi banku informacyi z zastosoweuiem metod astematyeznych

Nr 298 - M. Karpiniskis The equivalence problem of binary EOL sybtoms is decidable

Ir 299 - H. Karpinakis The atructural equivalence problem for BOL-systems is recureively Bolvable

Hr 300 - W. Lipskis On the logic of Izcomplete information
Ir 301 - M. Michalewicz: Optimizacya po koeflicientam liniejnoj Pormy liniejnogo zamykanija koniecznoj sistiemy raspoznanija axgoritmow
Hr 302 = ت. Jurkiewicz: Optymalizacja dwukryterialna podsystemu komunikscyjnego sieci teleinformatycznej
Ir 303 - B. Kopec, \(\mathbb{E}\). Subietas Konstrukcje integrujace W Ingwistycznym modelu bazy danych
```

